首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   137篇
  国内免费   207篇
测绘学   5篇
大气科学   14篇
地球物理   245篇
地质学   378篇
海洋学   387篇
综合类   54篇
自然地理   45篇
  2024年   4篇
  2023年   16篇
  2022年   39篇
  2021年   48篇
  2020年   50篇
  2019年   40篇
  2018年   38篇
  2017年   30篇
  2016年   29篇
  2015年   32篇
  2014年   46篇
  2013年   62篇
  2012年   49篇
  2011年   69篇
  2010年   27篇
  2009年   55篇
  2008年   49篇
  2007年   56篇
  2006年   48篇
  2005年   32篇
  2004年   37篇
  2003年   29篇
  2002年   25篇
  2001年   28篇
  2000年   33篇
  1999年   22篇
  1998年   19篇
  1997年   15篇
  1996年   19篇
  1995年   15篇
  1994年   7篇
  1993年   15篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有1128条查询结果,搜索用时 15 毫秒
71.
Samples of lake water and coastal seawater from Nova Scotia, Canada, were irradiated with natural or artificial sunlight to investigate the potential for photochemical hydrogen production. Hydrogen photo-production was observed in all natural water samples. Rates of hydrogen formation were highest in coloured lake water (range: 98–163 pmol L− 1h− 1) and lower in seawater (range: 19–45 pmol L− 1 h − 1). Dilutions of the most highly coloured lake sample (Kejimkujik Lake) showed a positive linear relationship between H2 production rates and CDOM concentration. Photo-production rates normalised to UV absorption coefficients at 350 nm indicated that the photochemical efficiency of hydrogen formation varied between samples, perhaps due to differences in the CDOM composition. Photochemical hydrogen formation was also seen in solutions of syringic acid and acetaldehyde: two low-molecular-weight carbonyl compounds found in natural waters. Photochemistry may therefore offer least a partial explanation for the persistently high levels of hydrogen observed in the low-latitude surface ocean.  相似文献   
72.
应用MODIS影像监测海州湾无机氮浓度的研究   总被引:1,自引:0,他引:1  
许勇  张鹰  刘吉堂  张东 《海洋科学》2008,32(9):76-81
利用连云港海州湾2004年至2006年的水质监测资料,选取时间上完全同步的空间分辨率为500m的MODIS Terra 1B数据,对反射率的单波段因子和波段组合因子与可溶无机氮(DIN)质量浓度之间进行相关分析。从总体上看,单波段因子与DIN质量浓度的相关性较低,但在含氮基团倍频和合频吸收带附近的波段(波段2、7)反射率与DIN质量浓度呈负相关,显示了含氮基团对水体光谱特征的影响;在波段组合因子中,因子F11(3.4)和F13(3.4)与DIN质量浓度呈显著正相关,用这两个因子建立DIN质量浓度的回归模型,R^2都达到0.7以上,相对精度达70%左右,最终选择因子F11(3.4)的线性模型反演该海域的DIN质量浓度,其结果与实际情况非常吻合。  相似文献   
73.
The variability of bottom dissolved oxygen (DO) in Long Island Sound, New York, is examined using water quality monitoring data collected by the Connecticut Department of Environmental Protection from 1995 to 2004. Self-organizing map analysis indicates that hypoxia always occurs in the Narrows during summer and less frequently in the Western and the Central Basins. The primary factor controlling the bottom DO, changes spatially and temporally. For non-summer seasons, the levels of bottom DO are strongly associated with water temperature, which means DO availability is primarily driven by solubility. During summer, stratification intensifies under weak wind conditions and bottom DO starts to decrease and deviate from the saturation level except for stations in the Eastern Basin. For the westernmost and shallow (<15 m) stations, bottom DO is correlated with the density stratification (represented by difference between surface and bottom density). In contrast, at deep stations (>20 m), the relationship between oxygen depletion and stratification is not significant. For stations located west of the Central Basin, bottom DO continues to decrease during summer until it reaches its minimum when bottom temperature is around 19–20 °C. In most cases the recovery to saturation levels at the beginning of fall is fast, but not necessarily associated with increased wind mixing. Therefore, we propose that the DO recovery may be a manifestation of either the reduced microbial activity combined with the depletion of organic matter or horizontal exchange. Hypoxic volume is weakly correlated to the summer wind speed, spring total nitrogen, spring chlorophyll a, and maximum river discharge. When all variables are combined in a multiple regression, the coefficient of determination (r2) is 0.92. Surprisingly, the weakest variable is the total nitrogen, because when it is excluded the coefficient r2 only drops to 0.84. Spring bloom seems to be an important source of organic carbon pool and biological uptake of oxygen plays a more crucial role in the seasonal evolution of bottom DO than previously thought. Our results indicate that the reassessment phase of the Long Island Sound Total Maximum Daily Load policy on nitrogen loading will most likely fail, because it ignores the contributions of the spring organic carbon pool and river discharge. Also, it is questionable whether the goal of 58.5% anthropogenic nitrogen load reduction is enough.  相似文献   
74.
Concentration–discharge relationships have been widely used as clues to the hydrochemical processes that control runoff chemistry. Here we examine concentration–discharge relationships for solutes produced primarily by mineral weathering in 59 geochemically diverse US catchments. We show that these catchments exhibit nearly chemostatic behaviour; their stream concentrations of weathering products such as Ca, Mg, Na, and Si typically vary by factors of only 3 to 20 while discharge varies by several orders of magnitude. Similar patterns are observed at the inter‐annual time scale. This behaviour implies that solute concentrations in stream water are not determined by simple dilution of a fixed solute flux by a variable flux of water, and that rates of solute production and/or mobilization must be nearly proportional to water fluxes, both on storm and inter‐annual timescales. We compared these catchments' concentration–discharge relationships to the predictions of several simple hydrological and geochemical models. Most of these models can be forced to approximately fit the observed concentration–discharge relationships, but often only by assuming unrealistic or internally inconsistent parameter values. We propose a new model that also fits the data and may be more robust. We suggest possible tests of the new model for future studies. The relative stability of concentration under widely varying discharge may help make aquatic environments habitable. It also implies that fluxes of weathering solutes in streams, and thus fluxes of alkalinity to the oceans, are determined primarily by water fluxes. Thus, hydrology may be a major driver of the ocean‐alkalinity feedback regulating climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
75.
Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high‐temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short‐term variations in chemical and ecological function. The authors report a 2‐week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, pH) and isotopic (D/H) parameters have been measured at hourly frequency. Our results show that the river had sub‐daily variations in both organic matter concentration and characteristics. In particular, after relatively high‐magnitude precipitation events, organic carbon concentration increased, with an associated increase in intensity of both humic‐like and tryptophan‐like fluorescence. D/H isotopic ratio demonstrates different hydrological responses to different rainfall events, and organic matter character reflects this difference. Events with precipitation < 2 mm typically yielded isotopically heavy water with relatively hydrophilic DOM and relatively low specific absorbance. Events with precipitation > 2 mm had isotopically lighter water with higher specific absorbance and a decrease in the proportion of microbially derived to humic‐like fluorescence. In our heavily urbanized catchment, we interpret these signals as one where riverine DOM is dominated by storm sewer‐derived ‘old’ organic matter at low‐rainfall amounts and a mixed signal at high‐precipitation amounts where ‘event’ surface runoff‐derived organic matter dominate during storm sewer and combined sewer overflow routed DOM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
76.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
77.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   
78.
The effects of marine environmental factors-temperature(T),dissolved oxygen(DO),salinity(S) and pH-on the oxidation-reduction potential(ORP) of natural seawater were studied in laboratory.The results show an indistinct relationship between these four factors and the ORP,but they did impact the ORP.Common mathematical methods were not applicable for describing the relationship.Therefore,a grey relational analysis(GRA) method was developed.The degrees of correlation were calculated according to GRA and the va...  相似文献   
79.
Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.  相似文献   
80.
We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号